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Abstract
Recent changes in diagnostic criteria for Alzheimer’s disease (AD) state that biomarkers can
enhance certainty in a diagnosis of AD. In the present study, we combined cognitive function and
brain morphology, a potential imaging biomarker, to predict conversion from mild cognitive
impairment to AD. We identified four biomarkers, or cortical signatures of cognition (CSC), from
regressions of cortical thickness on neuropsychological factors representing memory, executive
function/processing speed, language, and visuospatial function among participants in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuropsychological factor scores were
created from a previously validated multidimensional factor structure of the neuropsychological
battery in ADNI. Mean thickness of each CSC at the baseline study visit was used to evaluate risk
of conversion to clinical AD among participants with mild cognitive impairment (MCI) and rate of
decline on the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) score. Of 307 MCI
participants, 119 converted to AD. For all domain-specific CSC, a one standard deviation thinner
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cortical thickness was associated with an approximately 50% higher hazard of conversion and an
increase of approximately 0.30 points annually on the CDR-SB. In combined models with a
domain-specific CSC and neuropsychological factor score, both CSC and factor scores predicted
conversion to AD and increasing clinical severity. As structural magnetic resonance imaging
becomes more clinically routine and time-effective than neuropsychological testing, these
signatures can be used as biomarkers of conversion to AD andincreasing clinical severity.
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Introduction
Alzheimer’s disease (AD) is a progressive, devastating, and ultimately fatal
neurodegenerative disorder of older age that leads to loss of memory and the ability to
function independently (Blennow, 2006; Mayeux, 1999). Advances have been made over
the past several decades in understanding the pathological cascade of deterioration in AD
(Jack et al., 2010). However, the field continues to struggle with how to identify individuals
at the highest risk ofdeveloping signs and symptoms of clinical AD. The pathological
cascade of AD is likely present years before clinically noticeable changes, and likely begins
20 to 30 years before clinical onset when an individual is still cognitively normal (Weiner et
al., 2012). Thus, early detection of AD pathology using biomarkers is of practical and
clinical relevance (Clark et al., 2008; Shaw, 2008). Correctly distinguishing AD pathology
from other neurodegenerative disorders of late life using biomarkers in the preclinical stage
of AD would enhance clinical trials for early detection and treatment.

Structural imaging, which facilitates estimation of cortical thickness across the entire
cortical surface, is becoming increasingly used in dementia evaluation to assist with
differential diagnosis (Hill, 2010). Magnetic resonance imaging (MRI) is helpful for
excluding other brain conditions that cause cognitive decline, such as brain tumors and
hydrocephalus. This shift in clinical practice makes cortical thickness estimation a
potentially appealing, feasible biomarker. Structural MRI measures can potentially uncover
subtle changes that predict progression to clinical AD (Dickerson et al. 2011). Cortical
thickness has been demonstrated to be sensitive to early pathological changes in AD
progression. Fennema-Notestine and colleagues (2009) reported a pattern of greater levels of
cortical atrophy from cognitively normal older adults to single-domain MCI patients, to
multiple-domain MCI patients, and to patients with AD. Other studies report similar patterns
but have focused on particular brain regions such as the mesial temporal lobe (Karow et al.,
2010; McDonald et al., 2009; McEvoy et al., 2009). In a recent study of neuropsychological
and MRI characteristics, patients with prodromal AD were identified using new criteria
proposed to identify patients early in the disease course. Relative to healthy older adults,
patients with prodromal AD presented with greater gray matter atrophy in the medial
temporal lobe, which was correlated with lower episodic memory function (Rami et al.,
2012). This region is associated with pathological changes early in the course of AD, and the
finding underscores the potential utility of establishing an imaging signature of AD.

Previous research has suggested an early link between cortical atrophy in disease-specific
brain regions and progression from mild cognitive impairment to AD (Fox et al., 1996,
2001; Schott et al., 2003). The magnitude of cortical thinning in brain regions affected by
AD pathology, called a cortical signature of AD, has been shown to predict prodromal AD
(Bakkour et al., 2009; Dickerson et al., 2009, 2011). Although research suggests the biology
of AD involves a stereotypical pattern of cortical atrophy that begins in medial temporal
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lobe structures, leading to memory impairment, additional brain regions are affected as the
disease progresses, causing deficits in other cognitive functions such as visuospatial function
and language. In addition to memory, declines in executive function may take place
relatively early in the disease process (Carlson et al., 2008; Johnson et al., this issue),
underscoring the importance of multi-domain cognitive assessment to characterize early
changes attributable to AD pathology. Thus, assessing the cortical signatures of particular
cognitive domains may reveal cortical regions that predict dementia onset and functional
progression.

In 2011, the National Institute on Aging Alzheimer’s Association workgroup released
revised criteria for the diagnosis of AD (McKhann et al. 2011), which called for research on
using biomarkers in future diagnostic criteria. McKhann and colleagues concluded that
advancements in biomarkers could enhance the pathophysiological specificity of the
diagnosis. Amyloid imaging has been suggested as a feasible biomarker, and is currently
under FDA review for identifying people with significant amyloid deposition because it may
help identify cognitively normal prodromal individuals who may not yet have clinical AD
(Sperling et al. 2011). However, evidence of amyloid deposition does not capture everyone
at risk, as many older adults with mild cognitive impairment do not have measureable
amyloid levels (Villemagne & Rowe 2011). It is also currently unclear whether individuals
with mild cognitive impairment without significant amyloid will accumulate significant
amyloid and then convert to AD or another dementia.

Previous research using imaging markers have focused either on a priori selected regions
(e.g., Fox et al., 2001; Good et al., 2002; Jack et al. 1999; Smith et al., 2007; Thompson et
al., 2001), regions with differences between healthy controls and patients with AD (e.g.,
Davatzikos et al. 2011; Dickerson et al. 2009, 2011), or many regions used in machine
learning algorithms with or without feature selection (e.g., Hinrichs et al. 2009, 2011; Misra
et al. 2009; Shen et al. 2010). This previous work has established a critical knowledge base
and highlights the importance of considering systems of brain regions in the disease process
(Anh et al., 2011; Seeley et al. 2009). Thus, in the present study we aimed to define core
brain regions associated with cognitive factors (memory, executive function/processing
speed, language, visuospatial function, attention) previously derived from the
neuropsychological battery used in ADNI (Park et al., this issue).

The present study investigated whether cortical thinning associated with specific cognitive
functions (i.e., cortical signatures of cognition) predicts clinical conversion to AD in older
adults with amnestic MCI, and whether the predictive value is independent of a general
pattern of cortical thinning that has previously been identified as the cortical signature of
AD (Dickerson et al. 2009). Domain-specific factor scores of cognitive function, constructed
from a previously established battery of neuropsychological tests (Park et al., this issue),
were correlated with regional cortical thickness. It was hypothesized that domain-specific
cortical signatures of cognition (CSC), particularly for memory, are associated with time to
conversion to AD and worsening function.

Methods
Participants

Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. ADNI was launched in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration,
private pharmaceutical companies, and non-profit organizations as a $60 million, five-year
public-private partnership (Mueller et al., 2005). The primary goal of ADNI was to test
whether serial MRI, positron emission tomography (PET), other biological markers, and
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clinical and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment and early AD. Data, which are continuously updated and freely
available to subscribers, were downloaded on March 15, 2011.

Inclusion and Diagnostic Criteria
ADNI includes participants between 55-90 years of age who had a study partner able to
provide an independent evaluation of functioning and who spoke either English or
Spanish.Participants were primarily recruited from Alzheimer’s Disease Research centers.
Participants were willing and able to undergo test procedures, including neuroimaging, and
agreed to longitudinal follow up. Participants taking certain psychoactive medications were
excluded. Healthy control participants had a Mini-Mental State Examination (Folstein et al.,
1975) score above 23, clinical dementia rating (CDR) of 0 (Morris, 1993), and no depression
as measured by the Geriatric Depression Scale (Brink et al., 1982). MCI participants had an
MMSE score above 23, CDR of 0.5, and presented with a memory complaint and objective
memory impairment measured by the Wechsler Memory Scale Logical Memory Test II
(Wechsler, 1987). MCI participants had preserved activities of daily living and an absence
of dementia. Participants with AD at baseline had an MMSE score between 20 and 26, CDR
of 0.5 or 1.0, and met National Institute of Neurological and Communicative Diseases and
Stroke/Alzheimer’s Disease and Related Disorders Association guidelines (NINCDS/
ADRDA) for probable AD (McKhann et al. 1984).

The present study used baseline neuropsychological test performance data and cortical
thickness measurements from 119 with MCI who later converted to AD with 48 months of
the baseline visit (MCI-converters) to identify CSC. Baseline and 6, 12, 18, 24, 36, and 48-
month follow up data were then used in 307 MCI (of 397) participants to predict conversion
to AD and the rate of change in dementia severity. Participants with MCI who later
converted to AD were also compared to 169 healthy controls (of 229) to create a cortical
signature of AD (Dickerson et al. 2009). Participants were excluded from this study if any of
their regional mean cortical thickness measures were greater than 3 standard deviations from
their diagnostic group mean after controlling for age, sex, and education. This criterion was
chosen to provide an automated method of quality control rather than manual inspection and
editing of the surfaces, which istime-consuming and prone to bias.

Magnetic Resonance Imaging (MRI)
MRI data were downloaded from the ADNI website. The description of MRI data
acquisition of the ADNI study can be found at http://www.adniinfo.org/Scientists/
MRIProtocols.aspx. Briefly, high-resolution sagittal 3-dimensional T1-weighted
Magnetization Prepared RApid Gradient Echo (MP-RAGE) scans using custom designed
sequences with voxel sizes of 1.1×1.1×1.2 mm were collected on 1.5 Tesla scanners.
MPRAGE sequences were optimized for each scanner to maximize compatibility across
scanners. Scanners at each site were calibrated for ADNI with ongoing quality assurance
examinations using a specially designed ADNI phantom and human volunteers; these scans
were quality-checked by investigators at the Mayo site (Kruggel et al., 2010; Weiner et al.,
2012).

Cortical Thickness Estimation
We applied the FreeSurfer pipeline (version 5.1; Dale et al., 1999; Prabhakaran et al., 2012)
to the downloaded MR images to produce cortical thickness measurements for each subject
in the ADNI dataset. The T1-weighted MR image was first transformed to the Talairach
atlas (Talairach & Tournoux 1988). Next, the main body of white matter was identified by
atlas location, intensity, and local neighbors. The variation in intensity across white matter
was used to correct bias in the image. The image was then skull stripped, leaving only the
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brain. The remaining voxels were classified as white matter or non-white matter based on
intensity and neighbor constraints. For each hemisphere, an initial surface was created along
the edge of white matter and refined to follow the white matter/gray matter intensity
gradient. This surface was then pushed outward until the intensity gradient between gray
matter and cerebrospinal fluid was reached (the pial surface) (Dale et al. 1999; Fischl &
Dale 2000). Next, the sulcal and gyral pattern was aligned to the Freesurfer average surface
(Fischl, Sereno et al. 1999a, 1999b). The surface was resampled into a common reference
space, with the same number of nodes, or points, on the surface to analyze the results across
participants vertex-by-vertex or regionally. Finally, the thickness values were smoothed with
a 10 mm full-width at half maximum Gaussian filter. These methods of determining cortical
thickness from MRI scans have been demonstrated to be highly reliable in previous studies
of older adults (Dickerson et al. 2008).

Factor Scores of Cognitive Domains
Domain-specific factor scores were created from a previously established factor analysis of
the ADNI neuropsychological battery representing memory, executive function/processing
speed, visuospatial function, language, and attention (Park et al., this issue). Scores were
generated from a confirmatory factor analysis of the following tests administered at the
baseline ADNI visit, which allowed the following indicators to have different factor
loadings, or weights, on the underlying constructs. Details about administration and scoring
of each test are available from the ADNI protocol and elsewhere (Mueller et al., 2005). In
consultation with empirical data distributions of each indicator, a consensus panel of
neuropsychologists agreed on the factor structure. Memory was represented by the learning
(Trial5 – Trial1), long delay recall, recognition, and short delay recall calculated from the
Auditory Verbal Learning Test (AVLT; Rey, 1964) and delayed recall and recognition
measures from the ADAS-Cog (Rosen et al., 1984). Visuospatial function was represented
by clock-drawing, clock-copy (Goodglass & Kaplan, 1983), and ADAS-Cog construction
praxis scores. Language was represented by semantic fluency from the Verbal Fluency Test
(Morris et al., 1989), spontaneous recall from the Boston Naming Test (Williams, Mack, &
Henderson, 1989), and ADAS-Cog Naming. A factor representing executive function and
processing speed was composed of the Trail-Making Test (A and B-A) (Reitan, 1958),
ADAS-Cog number cancellation, and the digit symbol substitution test (Lezak et al., 2004;
Wechsler, 1987). Attention was represented by the Digit Span Forward and Backward
performance scores (Wechsler, 1987). As demonstrated by Park and colleagues (this issue),
the factors identified above are invariant across levels of clinical dementia severity.

Clinical Dementia Rating Scale - Sum of Boxes (CDR-SB)
The CDR is a semi-structured interview designed to assess global dementia severity usingsix
categories of cognitive and daily functioning (memory, orientation, judgment and problem
solving, community affairs, home and hobbies, and personal care) (Morris, 1993). It is
useful for staging and tracking decline in AD. Domains in the CDR are rated on an ordinal
scale (0 = no impairment, 0.5 = questionable impairment, 1 = mild impairment, 2 =
moderate impairment, 3 = severe impairment), which are summed to create a global estimate
of dementia severity(theoretical range = 0-18).

Analysis Plan
Descriptive statistics were used to characterize the study sample. We
usedneuropsychological test scores from MCI-converters to identify CSC at the baseline
ADNI study visit, which were then used as predictors in survival analyses to predict
conversion from MCI toclinical AD and in growth models predicting decline in CDR-SB.
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Cortical Signatures—We identified cortical signatures in the MCI-converter group at
baseline and then applied them to cognitively normal healthy control and MCI groups. For
each cognitive domain (memory, executive function/processing speed, language,
visuospatial function, attention), multiple regression analyses with covariates for age, sex,
and education were performed to evaluate the relationship between cortical thickness and
cognitive factor scores across MCI-converter participants. Corresponding cortical thickness
regions in all participants with MCI were then used to predict conversion from MCI to AD
and functional decline. Five CSCs were identified as the nodes that had a significant
(p<0.005) relationship between thickness and a factor score (Figure 1). We excluded the
attention CSC from further analyses because it overlapped considerably with other cortical
signatures (Table S2). The mean thickness for each CSC was standardized to z-scores in the
present study using the mean and standard deviation (e.g. unit variance) in the ADNI healthy
control group to ensure that each signature had a comparable variance. The standardized
scores were then used to predict conversion from MCI to AD and functional decline.

To compare our CSCs to the previously identified cortical signature of AD (Dickerson et al.,
2009), a two-sample t-test with covariates for age, sex, and education was used to identify a
cortical signature of AD by comparing cortical thickness values in cognitively normal
controls versus AD. The cortical signature of AD was created using a threshold at
P<1*10−14 to make it similar in size to the CSCs. A control region unassociated with any
factor scores was created with cortical thickness measures from the calcarine region, which
has been used as a control region in previous research (Dickerson et al. 2009).

MCI to AD Conversion—To accommodate varying times to AD conversion and
censoring, we used semi-parametric Cox proportional hazards models to predict conversion
to AD within four years of follow up using CSC in the MCI sample (Cox, 1972). These
models provide a relative hazard, which approximates a relative risk, of AD conversion per
unit difference in a CSC. As a control, the AD signature and calcarine cortical control
regions were included as predictors in a separate model. The timescale used was time from
the baseline study visit. Participants stopped contributing time to the analysis when they
converted, dropped out of the study, or reached their last study visit without converting.
Cumulative probabilities of conversion were plotted using non-parametric Kaplan-Meier
curves for each quartile of cortical thickness for each CSC (Kaplan & Meier, 1958).
Additionally, the following models were estimated: (1) a combined model that included all
cortical signatures and the cortical signature of AD; (2) a combined model that included all
neuropsychological factor scores; and (3) CSC and factor score pairs for each cognitive
domain. These analyses were conducted using Stata software, version 12 (StataCorp, 2011).

All models were adjusted for age, sex, and education. For survival analyses, model fit and
the proportional hazards assumption was evaluated using visual displays including Kaplan-
Meier plots and graphical displays of Schoenfeld residuals (Hosmer & Lemeshow, 1999).

Change in clinical severity—Latent growth models were used to model the trajectory of
decline in CDR-SB score through the third annual follow up visit (Muthén, 1997; Muthén &
Curran, 1997). Data from the four-year follow up wave were not included for this set of
analyses because data collection was still underway at the time this study was conducted. In
these models, latent intercept and slope factors represent initial status and annual linear
trajectory of CDR-SB score. These latent growth factors were regressed on each CSC in
separate models. Coefficients for intercept outcomes represent differences in the baseline
CDR-SB score per standard deviation difference in cortical thickness of a CSC. Coefficients
for trajectories represent annual paces of change in CDR-SB score per standard deviation
difference in cortical thickness of a CSC. Similar to survival analyses predicting conversion,
the following models were additionally evaluated: (1) a combined model that included all
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cortical signatures and the cortical signature of AD; (2) a combined model that included all
neuropsychological factor scores; and (3) CSC and factor score pairs for each cognitive
domain.

All models were adjusted for sex, age, and education. Model fit for latent growth models
was summarized by the root mean square error of approximation (RMSEA; Steiger, 1989)
and comparative fit index (CFI; Hu & Bentler, 1999). An RMSEA less than 0.05 and CFI
above 0.95 indicate excellent model fit (Hu & Bentler, 1999). These analyses were
conducted using Mplus statistical software, version 6.11 (Muthen & Muthen, 1998-2010).

Results
Demographics

Descriptive statistics of the sample and neuropsychological measures are in Table 1. The
majority of participants were white, male, and college-educated, and the median age was
75years (range 55, 90). Means and standard deviations of neuropsychological factor scores
and component test scores are provided for healthy control, MCI, and AD participants
included in the present study whose cortical thickness measures were within 3 standard
deviations of their respective group mean. Participants excluded for having cortical
thickness measures that exceeded this threshold (healthy control, n=50; MCI, n=90; AD,
n=46) did not differ from those in the study on any demographic variables within a
diagnostic group after controlling for multiple comparisons. Participants with MCI and AD
performed significantly worse on all tests compared to healthy controls. The memory factor
score revealed that MCI participants’ performance was on average 1.9 standard deviations
below that of healthy controls and other neuropsychological factor scores revealed an
approximately 1.0 standard deviation difference between healthy control and MCI
participants (Table 1).

Cortical Signatures of Cognition (CSC)
CSC for each cognitive domain were defined as all vertices on the cortical surface with a
significant correlation between cortical thickness and factor scores (p<0.005) and shown on
the cortical surface from FreeSurfer in Figure 1. The anatomical location of the peak of each
cluster was determined with the Destriaeux atlas (Destrieux et al. 2010) and listed in Table
S1. Each CSC for the MCI group was standardized to its corresponding mean and standard
deviation in the healthy control group for use in regressions.

The memory CSC covered 3,176 vertices (Figure 1; Table S1). The memory CSC
overlapped the most with the cortical signature of AD (Table S2). The mean thickness of the
memory CSC in cognitively normal participants was 2.85 mm (standard deviation, SD, 0.13
mm). In the MCI group, the mean memory CSC was 2.70 mm (SD=0.19) or 1.11 SD lower
than the mean among cognitively normal participants (Table 1).

The executive function/processing speed CSC covered 7,655 vertices (Figure 1; Table S1).
The executive function/processing speed CSC overlapped the most with the language CSC
and minimally with the memory CSC, visuospatial CSC, attention CSC, or the cortical
signature of AD (Table S2). The executive function/processing speed CSC mean thickness
in cognitively normal adults was 2.33 mm (SD=0.11 mm). In the MCI group, the mean
executive function/processing speed CSC was 2.24 mm (SD=0.13 mm) or 0.78 SD lower
than the mean among cognitively normal participants (Table 1).

The language CSC covered 6,190 vertices (Figure 1; Table S1). The language CSC
overlapped most with the executive function/processing speed CSC and minimally with
other signatures (Table S2). The language CSC mean thickness in cognitively normal adults
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was 2.21 mm (SD=0.10 mm). In the MCI group, the mean language CSC was 2.13 mm
(SD=0.12 mm) or 0.79 SD lower than the mean among cognitively normal participants
(Table 1).

The visuospatial CSC covered 3,439 vertices (Figure 1; Table S1). The visuospatial CSC
overlapped the most with the executive function/processing speed and language CSC and
minimally with other signatures (Table S2). The visuospatial CSC mean thickness in
cognitively normal adults was 2.16 mm (SD=0.10 mm). In the MCI group, the mean
visuospatial CSC was 2.09 mm (SD=0.12 mm) or 0.66 SD lower than the mean among
cognitively normal participants (Table 1).

The attention CSC was the smallest, covering 2,503 vertices (Figure 1; Table S1). The
attention CSC overlapped heavily with the executive function/processing speed, language,
and visuospatial CSC and minimally with the memory CSC or the cortical signature of AD
(Table S2). Because of the high degree of overlap in the attention CSC with other CSC, we
do not report analyses with this CSC. The attention CSC mean thickness in cognitively
normal adults was 2.32 (SD=0.10 mm). In the MCI group, the mean attention CSC was 2.24
mm (SD=0.13 mm) or 0.75 standard deviations lower than the mean among cognitively
normal participants (Table 1).

Cortical Signature of AD
The cortical signature of AD covered 7,912 vertices (Figure 1, Table S1). Although
significant portions of the memory CSC overlapped with the AD signature, most of the
cortical signature of AD did not overlap with the memory CSC (Table S2). The mean
thickness of the cortical signature of AD in cognitively normal adults was 2.94 mm
(SD=0.12 mm). In the MCI group, the mean was 2.77 mm (SD=0.18 mm) or 1.39 standard
deviations lower than the mean among cognitively normal participants (Table 1). As with
each CSC, the cortical signature of ADin the MCI group, standardized using the mean and
standard deviation in the cognitively normal group, were used in regressions.

Calcarine Sulcus Control Region
The calcarine sulcus region from Destriaeux atlas (Destrieux et al. 2010) had 5,851 vertices.
The mean thickness in cognitively normal adults was 1.73 mm (SD=0.10 mm). In the MCI
group, the mean was 1.69 mm (SD=0.11 mm), or 0.30 SD lower than the mean among
cognitively normal participants (Table 1).

MCI to AD Conversion
Among the 307 MCI participants, 119 converted to AD between 0.5 years and 4 years after
baseline (median follow up: 2 years). Table 2 provides results of survival analyses
predicting conversion to AD among MCI participants. After adjusting for age, sex, and
education, MCI participants had between a 45% and 56% increased hazard of converting to
AD per one standard deviation decrease in baseline domain-specific CSC thickness relative
to persons with the mean thickness of cognitively normal adults. Thinning in the language
CSC had the largest hazard for conversion. Figure 2 demonstrates that MCI participants in
the lowest language CSC quartile, with the thinnest cortices, have a 75% probability of
conversion after four years. During the same period, fewer than 30% of MCI participants
with the thickest language CSC quartiles converted (Figure 2, Language panel). Findings
were similar for other CSC, except the control region in which thinning was only weakly
associated with conversion over the study period (Figure 2, Table 2).

Analyses combining each CSC with its cognitive factor score and adjusting for age, sex, and
education revealed that all CSC and factor scores were significant independent predictors of
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conversion (Table 3). The combined hazard of conversion for the memory CSC and memory
factor score per 1 SD decrease in both cortical thickness and factor score was 0.42
(0.79*0.54), suggesting a 2.3-fold increased hazard of conversion when both the memory
CSC and factor score are considered. This combined hazard is larger than the hazard of
conversion for the AD signature (Table 2). Other domain-specific combinations similarly
increased the hazard of conversion by magnitudes between 1.9 and 2.1, all of which were
stronger than the AD signature (Table 2).

In analyses modeling all cortical signatures at once, only the cortical signature of
ADemerged as a significant predictor of conversion to AD (Table 4). A model of all factor
scores at once revealed that the memory factor score predicted conversion to AD (Table 4).
Although other CSC or factor scores were not significantly associated with conversion, they
still contributed to the overall hazard of conversion, albeit to a lesser degree.

Change in Clinical Severity
Results of regressions of levels and trajectories of CDR-SB on domain-specific CSCs are
shown in Table 5. Model fit statistics suggested excellent fits to the data (all
RMSEA<0.026; all CFI>0.99). Thicker CSC and greater factor scores predicted lower
baseline CDR-SB, with the exception of the control CSC and the visuospatial CSC and
factor score. All CSC and factor scores predicted annual increases in CDR-SB as cortical
thickness declines and cognitive ability declines, respectively. The memory, language, and
AD cortical regions were the strongest predictors of level and change in CDR-SB. For
example, for the memory CSC, a 1 SD lower thickness at baseline was associated with a
0.30 unit increase in CDR-SB annually. As expected, the control region had the weakest
relationship among the thickness measures.

Results from regressions of levels and trajectories of CDR-SB on domain-specific CSC and
its accompanying neuropsychological factor score are summarized in Table 6. As with
previous analyses, thinning in the memory CSC areas was significantly associated with
steeper decline in CDR-SB after adjusting for the memory neuropsychological factor score.
The same was true of other domain-specific CSC, but strongest for memory, language, and
executive function/processing speed. Although neuropsychological factor scores were
stronger predictors of level and change in CDR-SB than corresponding CSC, CSCs were
still significant independent predictors of change in CDR-SB.

When all CSC and the cortical signature of AD were combined in a single growth model to
predict trajectory of CDR-SB, greater thickness in every CSC was associated with less
baseline impairment and less worsening in CDR-SB over time (Table 7). This was also true
when all neuropsychological factor scores were entered into a model together (Table 7).

Discussion
The present study investigated the ability of cortical thickness from CSC, empirically
defined by their correlation with domain-specific cognitive factor scores, to predict
clinicalconversion to AD and accelerated worsening of clinical severity. Cortical thinning in
each CSC was associated with faster progression to AD and with faster rates of decline in
CDR-SB score. The analyses converge on three main findings. First, domain-specific
cortical signatures of cognition can be estimated which are largely independent of the
cortical signature of AD.Second, these cortical thickness measurements and cognitive
performance account for unique variance in conversion to AD and accelerated worsening of
clinical severity (Tables 3 and 6).Third, latent factors representing performance on
neuropsychological measures of memory,executive function, and language and their
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corresponding CSC are the best predictors of conversion to AD and clinically relevant
decline in nearly all models.

These results may provide clinicians with the ability to use the ADNI neuropsychological
battery in conjunction with a structural MRI scan to provide a more accurate estimate of the
risk of conversion to AD. Importantly, in current clinical practice an MRI, which can be
conducted in a few minutes, is almost universally performed in dementia evaluations while
neuropsychological testing, which can take an hour or more, is much less common. As seen
in the results, a 1 SD loss in thickness in the memory CSC and 1 SD decrease in memory
function more than doubles the risk of developing clinical AD. Knowledge of AD risk is
important for both the treatment of patients and for identifying potential candidates for novel
therapeutic interventions.

The present study utilized a large, well-characterized sample of participants to empirically
define cortical signatures of cognition. Although the focus of this paper was notabout the
detailed significance or implications of any particular region or domain, we briefly discuss
the CSC and cortical signature of AD in relation to previous research. We leveraged
advantages of rigorously constructed factor scores from a confirmatory factor analysis (Park
et al., this issue) to identify structure-function relationships. This approach is in contrast to
testing the relationship of the many variables in the ADNI neuropsychological battery;
however, sincethe goal was to identify regions associated with domains of cognition for use
in subsequent analysis, we were less interested in differences within each domain (e.g.
encoding versus retrieval) (Walhovd et al., 2010; Wolk & Dickerson 2011).

We can use results from other imaging studies to confirm using examples below that the
cortical signatures are measuring each domain accurately (e.g., content validity). For
example, the memory CSC is dominated by areas of the mesial temporal lobe that have been
shown to be related to memory both in function and structure (Buckner et al. 2004, 2005;
Burggren et al., 2011; Dickerson et al. 2008; Fjell et al. 2008; Johnson et al. 2006). The
executive function/processing speed, language, and visuospatial CSC all had significant
overlap, but also encompassed unique brain areas. Importantly, our findings emphasize that
executive function is not synonymous with frontal lobe functioning and suggests that
successful task performance also relies on non-frontal brain regions responsible for other
fundamental skills. The language CSC corresponds to regions shown to correlate with the
Boston Naming Test and the Controlled Oral Word Association Test (COWAT), both
measures of language ability (Anh et al., 2011). The attention CSC had the fewest vertices, a
finding that could be due to acute demands of the tasks.The cortical signature of AD we
used is consistent with regions that have previously been shown to be atrophic in AD
(Buckner et al. 2005; Dickerson et al. 2009, 2011; Fjell et al. 2009). At lower thresholds,
most of the brain is atrophic in large AD samples. We chose a high threshold to constrain
the signature to be the approximate size of each CSC, but note that alternative thresholds
could have been chosen.

Survival plots suggest that there at least 2 distinct patterns of cortical atrophy in Alzheimer’s
disease (Figure 2). Specifically, the middle quartiles of the memory CSC and AD pathology
show similar survival curves. In contrast, the visuospatial, executive function/processing
speed, and language CSC revealed that the top two quartiles were similar and the bottom
two quartiles were similar. These groupings are not surprising given the overlap between
CSCs. However, the finding is also consistent with the notion of multiple etiologies of AD
(Buckner, 2004). Future studies should probe covariance patterns in longitudinal change in
cortical thickness to better capture potentially separable processes. It is likely that a
combination of behavioral and structural change metrics will be ideal for identifying those at
highest risk of conversion to AD and accelerated worsening in clinical severity.
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Our results can be contextualized in a hypothetical model of biomarker and cognitive change
in pathological AD proposed by Jack and colleagues (Jack et al. 2010). The Jack model
proposes that AD pathology begins with abnormal buildup of amyloid beta, which
subsequently results in irregular processing of tau protein, leading to neurofibrillary tangles
and cellular apoptosis, impaired function in brain systems, cortical thinning in certain brain
regions, and eventually cognitive decline and functional disability characteristic of clinical
AD. Although the timing and relative order of biomarkers that measure these signs and
symptoms is an active area of research, their importance in AD is not disputed. The present
results suggest that amount of atrophy predict rate of functional decline, and thus takes place
beforehand. This inference is drawn from the finding that, after controlling for
neuropsychological factor scores as indices of behavior that were used to define the CSC,
the CSC still predicted conversion and significantly increased CDR-SB trajectories.
Additionally, the memory CSC and neuropsychological score together better predicted
conversion from MCI to AD than the cortical signature of AD alone. Although it is not
known how amyloid (either measured by PET or CSF samples) would affect the predictive
value of the CSC in the present study, PET scans and lumbar punctures are notperformed as
routinely as MRI at this time. Thus, utilizing a more widely-applied technique to inform the
risk of conversion may be preferable.

Although the aim of this work was to investigate conversion from MCI to AD, it is also
necessary to predict conversion from cognitively normal to MCI and to AD. At present, this
involves identifying individuals with preclinical AD (Sperling et al. 2011), usually with a
PET scan for amyloid. However, our study suggests that cognitive function, in combination
with cognition-defined signatures of structural or functional MRI, could provide sensitive
measures toidentify individuals with an increased risk of developing AD that may
complement PET imaging. Future research using CSCs is needed to investigate which CSCs
best predict conversion among healthy controls to MCI and AD.

This study probed the relationship of behavior and morphometry in predicting conversion to
MCI and accelerated worsening in dementia severity. Importantly, we chose to define our
morphometry metrics from structure-function relationships based on a validated factor
analysis of the ADNI neuropsychological battery (Park et al., this issue), rather than
pathological differences. In defining morphometry metrics based on behavior, we were able
to target several aspects of the pathological AD disease process. Although memory,
executive function, and language provided the dominant effects, thickness in other regions
can be used to compute a cumulative odds ratio across CSCs or factor scores.

Several caveats merit attention. First, the ADNI sample is more highly educated than theUS
population and represents a self-selected sample of volunteers who present to AD research
centers. Thus, findings should be replicated in other more educationally and culturally
diverse samples. Second, factor scores for particular cognitive domains are, by design, a
generalization of performance on cognitive tasks designed to measure very specific aspects
of cognitive function. CSC derived from these scores are a further abstraction, which may
obscure specific forms of neuropsychological impairment that might predict AD early in its
course (Wolk & Dickerson, 2011). However, clinical AD defined in ADNI, as predicted in
our survival models, is a disease of global impairment. A third caveat is that successful
performance in any domain of cognition is not independent of other cognitive domains, and
likely entails contributions from several neural networks (Wolk & Dickerson, 2011). The
present study’s CSCs were based on empirically defined brain regions correlated with
neuropsychological performance, not neural networks. Thus, domain-specific CSCs in this
study are also correlated with each other (Table S3), which has implications for statistical
models where all the CSCs are considered at the same time. Finally, the present study did
not investigate cortical volumes that were empirically associated with cognitive function.
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Volumetric analyses, whether using Freesurfer volumes or voxel-based morphometry to
identify voxels that are correlated with neuropsychological factors scores, should be
explored in future studies.

Conclusion
The ability to accurately identify risk for developing clinical AD while an individual has
normal cognition or MCI will enhance selection of participants for treatment trials and
enable clinicians to decide on optimal management at an earlier stage. Establishing CSCs is
a promising approach that integrates structural imaging with the gold standard of clinical
disease stage, neuropsychological measures, and thus enables researchers to track change in
multiple modalities over time. The present study indicated that factor scores and CSCs for
memory and language both significantly predicted risk of conversion to AD and accelerated
deterioration in dementia severity. We conclude that predictive models are best when they
utilize both neuropsychological measures and imaging biomarkers.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Graphical representation of domain-specific cortical signatures of cognition (CSC) and the
cortical signature of AD.
Significant nodes (P<0.005) from regressions of cortical thickness and cognitive factor
scores are highlighted on the pial surface of the FreeSurfer average brain. To derive the
cortical signature of AD, nodes with significant cortical thinning observed between
individuals with AD and healthy controls (P<1*10−14) are shown on the pial surface of the
FreeSurfer average brain. The more stringent threshold for the cortical signature of AD was
chosen to create a signature with approximately the same area as the CSC.
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Figure 2.
Cumulative probability of conversion to AD in ADNI MCI participants (n=307)
Cumulative probability plots of conversion time to AD for each cortical signature of
cognition (CSC), cortical signature of AD, and a control region. Legend. Cumulative
probabilities of conversion are shown for each quartile of cortical thickness for each
domain-specific CSC. CSC: Cortical signature of cognition; AD: Alzheimer’s disease; ROI:
region of interest
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Table 1

Baseline Demographic Characteristics and Cognitive Performance: Results from ADNI (n=623)

Healthy
control
(n=169)

Mild
cognitive

impairment
(n=307)

Alzheimer’s
disease
(n=147)

P-value for
group

differences

Age [Median] 75.0 75.0 75.0 0.56

Years of education, Mean (SD) 15.9 (2.8) 15.6 (3.1) 14.6 (3.2) < 0.001

Sex, Male, n (%) 81 (47.9) 195 (63.5) 82 (55.8) <0.01

Race, White, n (%) 155 (91.7) 287 (93.5) 139 (94.6) 0.69

Mini-Mental State Exam, Mean (SD) 29.2 (0.9) 27.1 (1.8) 23.6 (1.9) < 0.001

CDR sum of boxes, Mean (SD) 0.0 (0.1) 1.6 (0.9) 4.3 (1.6) < 0.001

Memory

 AVLT Learning (Trial 5 - Trial 1), Mean (SD) 5.8 (2.4) 3.4 (2.3) 1.8 (1.8) < 0.001

 AVLT Long Delay (30min), Mean (SD) 7.6 (3.6) 2.8 (3.4) 0.8 (1.7) < 0.001

 AVLT Recognition, Mean (SD) 12.9 (2.6) 9.6 (3.6) 7.3 (4.0) < 0.001

 AVLT Short Delay, Mean (SD) 8.3 (3.3) 3.9 (3.2) 1.7 (1.8) < 0.001

 ADAS Delayed Recall, Mean (SD) 2.8 (1.7) 6.1 (2.3) 8.6 (1.6) < 0.001

 ADAS Recognition, Mean (SD) 2.7 (2.4) 4.7 (2.7) 6.6 (2.8) < 0.001

Visuospatial function

 Clock Score, Mean (SD) 4.9 (0.4) 4.7 (0.5) 4.4 (0.9) < 0.001

 Clock Copy Score, Mean (SD) 4.7 (0.6) 4.2 (1.0) 3.5 (1.2) < 0.001

 ADAS Construction, Mean (SD) 0.4 (0.5) 0.5 (0.6) 0.8 (0.6) < 0.001

Language

 Verbal Fluency Test-Animal total, Mean (SD) 20.2 (5.3) 16.3 (4.9) 12.7 (4.6) < 0.001

 Verbal Fluency Test-Vegetables, Mean (SD) 14.9 (4.0) 10.9 (3.5) 8.2 (3.2) < 0.001

 Boston Naming Test, spontaneous recall, Mean
(SD) 27.3 (2.8) 25.4 (3.6) 23.6 (3.9) < 0.001

 ADAS Naming, Any correct, n (%) 9 (5.3) 74 (24.1) 56 (38.1)

Executive function, processing speed

 Trails B-A time, Mean (SD) 47.4 (29.3) 72.1 (45.6) 98.1 (57.7) < 0.001

 Trails A, Mean (SD) 35.4 (12.3) 41.5 (16.6) 58.8 (29.2) < 0.001

 ADAS Number Cancellation, Mean (SD) 24.9 (5.1) 22.1 (6.0) 18.0 (6.6) < 0.001

 Digit Symbol, Mean (SD) 45.9 (9.6) 37.7 (10.9) 28.2 (12.4) < 0.001

Attention

 Digit Span Forward, Mean (SD) 8.8 (2.0) 8.3 (2.0) 7.5 (1.9) < 0.001

 Digit Span Backward, Mean (SD) 7.2 (2.0) 6.3 (1.8) 5.3 (1.5) < 0.001

Factor scores (standardized in healthy controls)

 Memory 0.0 (1.0) −1.1 (1.1) -- < 0.001

 Visuospatial function 0.0 (1.0) −0.4 (0.8) -- < 0.001

 Language 0.0 (1.0) −0.6 (0.8) -- < 0.001

 Executive function, processing speed 0.0 (1.0) −0.5 (0.9) -- < 0.001

 Attention 0.0 (1.0) −0.3 (0.9) -- < 0.001

Cortical signatures (standardized in healthy controls)
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Healthy
control
(n=169)

Mild
cognitive

impairment
(n=307)

Alzheimer’s
disease
(n=147)

P-value for
group

differences

 Memory 0.0 (1.0) −1.1 (1.4) -- < 0.001

 Visuospatial function 0.0 (1.0) −0.7 (1.2) -- < 0.001

 Language 0.0 (1.0) −0.8 (1.2) -- < 0.001

 Executive function, processing speed 0.0 (1.0) −0.8 (1.2) -- < 0.001

 Attention 0.0 (1.0) −0.8 (1.3) -- < 0.001

 Control region 0.0 (1.0) −0.3 (1.2) -- <0.01

 AD pathology 0.0 (1.0) −1.4 (1.5) -- < 0.001

Legend. All neuropsychological domain-specific factor scores and cortical signatures were scaled to have a mean of 0 and standard deviation of 1
in the health control group. CDR=Clinical dementia rating. M=mean. SD=standard deviation.
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Table 2

Independent predictors of conversion from MCI to AD in ADNI MCI participants (n=307)

Hazard ratio
95%

Confidence
interval

Cortical signatures

 Memory 0.66 * (0.58, 0.76)

 Visuospatial 0.70 * (0.59, 0.84)

 Language 0.64 * (0.54, 0.75)

 Executive function/processing speed 0.64 * (0.54, 0.75)

 Control region 0.81 * (0.69, 0.95)

 AD pathology region 0.62 * (0.54, 0.70)

Neuropsychological factor score

 Memory 0.47 * (0.37, 0.58)

 Visuospatial 0.64 * (0.53, 0.77)

 Language 0.56 * (0.45, 0.70)

 Executive function/processing speed 0.58 * (0.47, 0.71)

Legend. Results of 10 separate Cox proportional hazards regressions predicting time to conversion to AD through up to 48 months since the
baseline visit. All models are adjusted for sex, age, and education.

AD: Alzheimer’s disease

Brain Imaging Behav. Author manuscript; available in PMC 2013 December 01.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Gross et al. Page 22

Table 3

Cox proportional hazard survival models of CSC and factor scores in each domain predicting conversion from
MCI to AD in ADNI MCI participants (n=307)

Hazard ratio
95%

Confidence
interval

Memory

 Cortical signature of cognition 0.79 * (0.68, 0.91)

 Factor score 0.54 * (0.42, 0.69)

Visuospatial ability

 Cortical signature of cognition 0.76 * (0.64, 0.91)

 Factor score 0.68 * (0.57, 0.83)

Language

 Cortical signature of cognition 0.72 * (0.60, 0.86)

 Factor score 0.67 * (0.53, 0.85)

Executive function/processing speed

 Cortical signature of cognition 0.72 * (0.60, 0.87)

 Factor score 0.68 * (0.55, 0.85)

Legend. Results of 4 separate Cox proportional hazards regressions predicting time to conversion to AD through up to 48 months since the baseline
visit. All models are adjusted for sex, age, and education.

AD: Alzheimer’s disease
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Table 4

Models of CSC and Factor Score Predictors of Conversion from MCI to AD in ADNI MCI participants
(n=307)

Hazard ratio
95%

Confidence
interval

Cortical signatures

 Memory 1.22 (0.89, 1.68)

 Visuospatial 1.01 (0.72, 1.41)

 Language 0.79 (0.52, 1.22)

 Executive function/processing speed 0.91 (0.62, 1.32)

 Control region 1.02 (0.84, 1.24)

 AD pathology region 0.55 * (0.40, 0.76)

Neuropsychological factor score

 Memory 0.48 * (0.37, 0.62)

 Visuospatial 0.85 (0.62, 1.17)

 Language 1.28 (0.86, 1.91)

 Executive function/processing speed 0.76 (0.54, 1.06)

Legend. Results of 2 Cox proportional hazards regressions predicting time to conversion to AD through up to 48 months since the baseline visit.
The first model included all cortical signatures together. The second model included all neuropsychological factor scores together. Models are
adjusted for sex, age, and education.

AD: Alzheimer s disease
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Table 5

Results from regressions of trajectories of CDR sum of boxes on domain-specific cortical regions and
neuropsychological factor scores from latent growth models in ADNI MCI participants (n=307)

Estimate
95%

Confidence
interval

Cortical signature of cognition

 Memory

  Intercept −0.13 * (−0.21, −0.05)

  Trajectory −0.30 * (−0.37, −0.22)

 Visuospatial

  Intercept −0.08 (−0.18, 0.01)

  Trajectory −0.24 * (−0.35, −0.14)

 Language

  Intercept −0.13 * (−0.21, −0.04)

  Trajectory −0.29 * (−0.39, −0.19)

 Executive function/processing speed

  Intercept −0.12 * (−0.21, −0.03)

  Trajectory −0.29 * (−0.39, −0.19)

 Control region

  Intercept −0.03 (−0.12, 0.06)

  Trajectory −0.12 * (−0.23, −0.02)

 AD pathology region

  Intercept −0.13 * (−0.20, −0.06)

  Trajectory −0.30 * (−0.37, −0.23)

Neuropsychological factor score

 Memory

  Intercept −0.19 * (−0.29, −0.09)

  Trajectory −0.42 * (−0.50, −0.34)

 Visuospatial

  Intercept −0.08 (−0.18, 0.02)

  Trajectory −0.39 * (−0.50, −0.27)

 Language

  Intercept −0.17 * (−0.29, −0.05)

  Trajectory −0.44 * (−0.55, −0.34)

 Executive function/processing speed

  Intercept −0.20 * (−0.31, −0.10)

  Trajectory −0.40 * (−0.51, −0.29)

Legend. Results of 10 separate latent growth models of CDR-SB through 36 months. Coefficients for intercept outcomes represent differences in
CDR sum of box units per unit change in cortical thickness, which is on a z-score metric (mean = 0, sd = 1). Coefficients for slope outcomes
represent annual change in CDR sum of box score per unit difference in cortical thickness measure. Models are adjusted for sex, age, and
education.

AD: Alzheimer’s disease
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Table 6

Results from regressions of trajectories of CDR sum of boxes on domain-specific cortical regions from latent
growth models in ADNI MCI participants (n=307)

Estimate
95%

Confidence
interval

Model 1. Memory

 Cortical signature of cognition

  Intercept −0.08 (−0.17, 0.01)

  Trajectory −0.18 * (−0.25, −0.11)

 Factor score

  Intercept −0.14 * (−0.25, −0.03)

  Trajectory −0.31 * (−0.39, −0.23)

Model 2. Visuospatial ability

 Cortical signature of cognition

  Intercept −0.07 (−0.17, 0.03)

  Trajectory −0.15 * (−0.25, −0.06)

 Factor score

  Intercept −0.05 (−0.15, 0.05)

  Trajectory −0.33 * (−0.43, −0.22)

Model 3. Language

 Cortical signature of cognition

  Intercept −0.09 (−0.18, 0.01)

  Trajectory −0.18 * (−0.28, −0.08)

 Factor score

  Intercept −0.12 (−0.25, 0.01)

  Trajectory −0.34 * (−0.45, −0.24)

Model 4. Executive function/processing speed

 Cortical signature of cognition

  Intercept −0.06 (−0.15, 0.04)

  Trajectory −0.18 * (−0.28, −0.09)

 Factor score

  Intercept −0.17 * (−0.29, −0.06)

  Trajectory −0.30 * (−0.41, −0.19)

Legend. Results of 5 separate latent growth models of CDR-SB score through 36 months. Coefficients for intercept outcomes represent differences
in CDR sum of box units per unit change in cortical thickness, which is on a z-score metric (mean = 0, sd = 1). Coefficients for slope outcomes
represent annual change in CDR sum of boxes score per unit difference in cortical thickness measure. Models are adjusted for sex, age, and
education.

Brain Imaging Behav. Author manuscript; available in PMC 2013 December 01.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Gross et al. Page 26

Table 7

Results from regressions of trajectories of CDR sum of boxes on domain-specific cortical regions and
neuropsychological factor scores from two latent growth models in ADNI MCI participants (n=307)

Estimate 95% Confidence
interval

Cortical signature of cognition

 Memory

  Intercept −0.13 * (−0.21, −0.05)

  Trajectory −0.30 * (−0.37, −0.22)

 Visuospatial

  Intercept −0.08 (−0.18, 0.01)

  Trajectory −0.24 * (−0.35, −0.14)

 Language

  Intercept −0.13 * (−0.21, −0.04)

  Trajectory −0.29 * (−0.39, −0.19)

 Executive function

  Intercept −0.12 * (−0.21, −0.03)

  Trajectory −0.29 * (−0.39, −0.19)

 Control region

  Intercept −0.03 (−0.12, 0.06)

  Trajectory −0.12 (−0.23, −0.00)

 AD pathology region

  Intercept −0.13 * (−0.20, −0.06)

  Trajectory −0.30 * (−0.37, −0.23)

Neuropsychological factor score

 Memory

  Intercept −0.19 * (−0.29, −0.09)

  Trajectory −0.42 * (−0.50, −0.34)

 Visuospatial

  Intercept −0.08 (−0.18, 0.02)

  Trajectory −0.39 * (−0.50, −0.27)

 Language

  Intercept −0.17 * (−0.29, −0.05)

  Trajectory −0.44 * (−0.55, −0.34)

 Executive function

  Intercept −0.20 * (−0.31, −0.10)

  Trajectory −0.40 * (−0.51, −0.29)

Legend. Results of 2 separate latent growth models of CDR-SB score through 36 months. The first model included all cortical signatures together.
The second model included all neuropsychological factor scores together. Coefficients for Intercept outcomes represent differences in CDR sum of
box units per unit change in cortical thickness, which is on a z-score metric (mean = 0, sd = 1). Coefficients for slope outcomes represent annual
change in CDR sum of box score per unit difference in cortical thickness measure. Models are adjusted for sex, age, and education.

AD: Alzheimer’s disease
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